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Abstract. A survey on the generalizations of Heisenberg uncertainty relation and a general scheme for
their entangled extensions to several states and observables is presented. The scheme is illustrated on the
examples of one and two states and canonical quantum observables, and spin and quasi-spin components.
Several new uncertainty relations are displayed.
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1 Introduction

The uncertainty (indeterminacy) principle exhibits a fun-
damental manner in which the quantum description of
nature departs from the classical one. It was introduced
in 1927 by Heisenberg [1] who demonstrated the im-
possibility of simultaneous precise measurement of the
canonical quantum observables x and px (the coordinate
and the momentum) by positing an approximate relation
δpxδx ∼ �. Soon after the Heisenberg paper appeared
Kennard proved [2] the inequality (furthermore we use
the dimensionless p and q, [p, q] = −i)

(∆p)2(∆q)2 ≥ 1
4
, (1)

where (∆p)2 and (∆q)2 are the variances (dispersions)
of p and q, defined for any observable X by (∆X)2 :=
〈(X − 〈X〉)2〉. The inequality (1) became known as the
Heisenberg uncertainty relation (Heisenberg UR).

Generalization of inequality (1) to the case of arbitrary
two observables (Hermitian operatorsX and Y ) was made
by H. Robertson in 1929 [3],

(∆X)2(∆Y )2 ≥ 1
4
|〈[X,Y ]〉|2 . (2)

Robertson inequality (2) became known again as the
Heisenberg UR. However we prefer, in view of the Robert-
son contribution, to call it Heisenberg–Robertson (H–R)
UR. The inequality (2) and/or (1) became an irrevocable
part of every textbook on quantum mechanics and it is
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regarded as a rigorous formulation of the indeterminacy
principle.

The aim of the present paper is to consider symmetry
properties of the H–R UR (Sect. 2) and its natural in-
variant generalizations to several observables and several
states (Sects. 2 and 3). In Section 2 and Section 3.1 the
invariance properties of H–R UR and its Schrödinger [4]
and Robertson [5] generalizations to two [4] and n [5] ob-
servables are briefly analyzed. Three basic UR’s for two
canonical observables and two states are displayed in Sec-
tion 3.2. In Section 3.3 a general scheme for construction of
UR’s for n observables and m states is provided. The rela-
tion of the conventional UR’s to the widely used canonical
coherent and squeezed states [6–8] is reminded.

2 Invariant generalizations
of Heisenberg–Robertson relation

The conventional UR’s (1, 2) suffer from two deficiencies.
The first one is that they are not form-invariant under the
linear transformations of operators. In particular (1) is not
invariant under linear canonical transformations: if (1) is
minimized in a state |ψ〉, then the canonical transforma-
tion (rotation on angle θ in phase space)

p′ = p cos θ + q sin θ, q′ = −p sin θ + q cos θ, (3)

violates the equality in (1). So it makes sense to look for
other UR’s, which are invariant under rotation (3). At the
“level” of two second moments of p and q such inequality
is [8]

(∆p)2 + (∆q)2 ≥ 1. (4)
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This inequality is less precise than (1): the minimization
of (4) entails the equality in (1), the inverse being untrue.
For two arbitrary observables (4) takes the form

(∆X)2 + (∆Y )2 ≥ |〈[X,Y ]〉|. (5)

If X and Y belong to a Lie algebra L, then their “linear
canonical transformations” are the automorphisms in L.

The second point is that for two observables there are
three second-order statistical moments – the variances of
each observable and their covariance, while only the first
two ones are taken into account in (2). This fact was first
noted by Schrödinger [4], who derived (using Schwartz
inequality) the more general inequality

(∆X)2(∆Y )2 − (∆XY )2 ≥ 1
4
|〈[X,Y ]〉|2 , (6)

where ∆XY denotes the covariance of X and Y , ∆XY =
〈XY +Y X〉/2−〈X〉〈Y 〉. In the classical probability theory
the vanishing covariance is a necessary (but not sufficient)
condition for the statistical independence of two random
quantities.

In the case of coordinate and momentum observables
the relation (6) takes the shorter form of

(∆q)2(∆p)2 − (∆qp)2 ≥ 1
4
· (7)

Schrödinger inequality (6) is more general and more pre-
cise than that of Heisenberg–Robertson, equation (2): the
former is reduced to the latter in states with vanishing
covariance of X and Y , and the equality in (2) entails the
equality in (6), the inverse being untrue.

One can easily check that Schrödinger UR is invari-
ant under all linear canonical transformations of p and q,
including the scale transformations. From the three in-
equalities (1, 4, 7) it is the Schrödinger one that is most
precise and the most symmetric. The inequality (4) is the
most unprecise one: the equality in it entails the equality
in both (7) and (1).

The interest in Schrödinger relation has grown in the
last two decades in connection with the description and
experimental realization of the canonical squeezed states
of the electromagnetic radiation [7,8]. This family can be
defined [9] as the unique set of states that minimize in-
equality (7). It was only recently realized [8], that the
famous canonical coherent states (introduced in [6]) can
be uniquely defined as states that minimize (4).

3 Generalizations to several observables
and several states

The uncertainty relations (1), (2) and (6) provide a quan-
titative limitations to the accuracy of measurement of two
incompatible observables in one and the same state. Two
natural questions related to inequalities (1–7), can be im-
mediately formulated:

(a) are there nontrivial generalizations to the case of
several observables and one state?

(b) are there nontrivial generalizations to the case of
one or several observables and several states?

By “nontrivial generalizations” I mean uncertainty in-
equalities, which can not be represented as sums or prod-
ucts of those for observables in one state. Such UR’s could
be called state-entangled.

3.1 Robertson inequalities for n observables

The positive answer to the first of the above two questions
was given by Robertson in 1934 [5], who generalized (2)
and (6) to the case of n observables. For n Hermitian
operators Xi, i = 1, . . . , n, Robertson established the in-
equality (X = (X1, . . . , Xn))

detσ(X) ≥ detC(X), (8)

where σ is the uncertainty (or covariance) matrix, and C is
a matrix of mean commutators of Xi and Xj :

σij =
1
2
〈XiXj +XjXi〉 − 〈Xi〉〈Xj〉, Cij = − i

2
〈[Xi, Xj ]〉·

The diagonal element σii is just the variance of Xi, while
σij is the covariance of Xi and Xj . At n = 2 inequality (8)
recovers (6).

Robertson UR (8) is form-invariant with respect to
nondegenerate linear real transformations of n opera-
tors Xi, the equality being invariant. Indeed, let X ′

i =
λijXj , where Λ = (λij) is non-degenerate. Then the co-
variance matrix σ′ for X ′

i in the same state is obtained as

σ′ := σ(X′) = ΛσΛT , (9)

where ΛT is transposed Λ. Similarly C′ = ΛCΛT . Then
we see that the equality detσ′ = detC′ follows from
detσ = detC and vice versa. Therefore (8) generalizes
the full symmetry properties of Schrödinger relation (6)
to the case of n observables. Robertson also noted the
generalization of the less precise inequality (2): from the
Hadamard inequality and (8) he immediately derived the
inequality (to be called Hadamard–Robertson UR)

(∆X1)2 . . . (∆Xn)2 ≥ detC(X). (10)

Here I provide the generalization of the most unprecise
inequality (5) to the case of n arbitrary observables Xi:

Trσ(X) =
∑n

i (∆Xi)2 ≥ 1
n− 1

∑n
j>i|〈[Xi, Xj ]〉|. (11)

This inequality holds for any n. For even n, n = 2m, it
can be enhanced,

Tr σ(X) ≥ ∑m
µ=1|〈[Xµ, Xm+µ]〉|. (12)
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Note that (8) is most precise and most symmetric: it
is form-invariant under any nondegenerate linear transfor-
mation X −→ X′ = ΛX. One can check that the most un-
precise inequality (11) is invariant under orthogonal linear
transformations ofXi. The intermediate precision inequal-
ity (10) is most unsymmetric: it is invariant under special
scale transformations Xk → Xk/αk, Xm+k → αkXm+k

only (k = 1, . . .m, m ≤ [n/2]).
The problem of minimization of Robertson relation (8)

is considered in [11] (see also [8]). It is worth noting the re-
sult that the group-related coherent states with maximal
symmetry (see [12] and references therein), the simplest
examples of which are the spin and the quasi-spin coher-
ent states, are the unique states that minimize Robertson
inequality (8) for the Hermitian components of the Weyl
lowering and raising operators. Therefore these states can
be alternatively defined as Robertson minimum uncer-
tainty states (called also Robertson intelligent states [11])
for several observables.

On the example of 2m canonical observables Xi = Qi,
Qµ = pµ, Qm+µ = qµ, inequalities (8) and (10) and (12)
read

detσ(Q) ≥ 1/4m, (13)

(∆p1)2(∆q1)2 · · · (∆pm)2(∆qm)2 ≥ 1/4m, (14)

Tr σ(Q) =
∑m

µ=1

[
(∆pµ)2 + (∆qµ)2

] ≥ m. (15)

The equality in (13) is reached in the multimode squeezed
states [7,8] (for this and other examples of states that min-
imize (8) with n ≥ 2 see Ref. [11,8]). The squeezed states
with vanishing covariances of all pµ and qν minimize (10),
while (15) is minimized only in multimode canonical co-
herent states (in which one also has ∆pµqν = 0).

Let us note that Trσ(Q) (and Tr (σ(Q))k as well) is in-
variant under orthogonal transformations Q −→ ΛQ, but
not under symplectic ones. Symplectic transformations
preserve the canonical commutation relations. In the one
mode case, i.e. m = 1, all orthogonal matrices are sym-
plectic. Invariant under symplectic transformations is the
quantity Tr (σJ)k, where J is the standard symplectic ma-
trix. In references [10,11] the following inequalities were
proved (please note that in Ref. [10] factor i is omitted)

Tr [iσ(Q)J ]2k ≥ m/22k−1. (16)

At m = 1 and k = 1 Schrödinger UR (7) is recovered.
The 2m canonical operators Qi are known to close

the Heisenberg–Weyl Lie algebra. In the general case
of Xi closing any Lie algebra the right hand sides of
the above UR’s (8, 10–12) are, due to the commutation
relations [Xi, Xk] = cjikXj , combinations of mean val-
ues of Xi. Let us note the case of su(2) ∼ so(3) and
su(1, 1) ∼ so(2, 1) algebras. The three basic operators
Xi = Ji of su(2) are the spin operators, and the three
generators Ki of su(1, 1) are known as quasi-spin opera-
tors: [Jk, Jl] = iεklmJm, [K1,K2] = −iK3, [K2,K3] =

iK1, [K3,K1] = −iK2. The inequality (11), applied to Ji
and Ki, tells us that the sum of fluctuations (variances)
of spin or quasi-spin components is greater than one half
of the sum of their absolute mean values,

∑
i=1

(∆Ji)2 >
1
2

∑
i=1

|〈Ji〉| ,
∑
i=1

(∆Ki)2 >
1
2

∑
i=1

|〈Ki〉| .

3.2 Extension of Heisenberg and Schrödinger relations
to two distinct states

All the uncertainty relations so far considered in the lit-
erature (and the above (8–16) as well) have the form of
inequalities between first and second (or higher) moments
of the observables in one and the same state. Furthermore
such uncertainty relations should be called conventional.

However it is clear that one can measure and com-
pare the accuracy of measurement of observables in
distinct states. Therefore it is reasonable to look for non-
trivial inequalities between statistical moments of observ-
ables in two and several states [13]. Such relation should
be called state-extended or state-entangled. On the low-
est level of two observables such extended inequalities can
be obtained by somewhat elementary manipulations of
the Heisenberg–Robertson and/or Schrödinger inequali-
ties written for two distinct states. Here are the state-
entangled extensions of the conventional relations (4, 1)
and (6) for p and q to the case of two state |φ〉 and |ψ〉,

∆ψq ∆φp+∆φq ∆ψp ≥ 1, (17)

(∆ψq)2(∆φp)2 + (∆φq)2(∆ψp)2 ≥ 1/2, (18)

(∆ψq)2(∆φp)2 + (∆φq)2(∆ψp)2 − 2 |∆ψqp∆φqp| ≥ 1/2,
(19)

where ∆ψXY is the covariance of X and Y in the state
|ψ〉 (∆ψXX = (∆ψX)2 is the variance of X). At |ψ〉 = |φ〉
the conventional UR’s (4, 1) and (7) are recovered. Note
the symmetry under transpositions p↔ q and |ψ〉 ↔ |φ〉.

3.3 General scheme for uncertainty relations

A quite general scheme for construction of uncertainty re-
lations for n observables and m states is provided by the
following Lemma,

Lemma. IfHµ, µ = 1, . . . ,m are non-negative definite
Hermitian n× n matrices, then the following inequalities
hold

M
(
i1, . . . , ir;

∑
µ Sµ

)
≥ M

(
i1, . . . , ir;

∑
µAµ

)
, (20)

M
(
i1, . . . , ir;

∑
µHµ

)
≥

∑
µ

M(i1, . . . , ir;Hµ), (21)
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TrSµ ≥ 2
n− 1

n∑
j>i

|(Aµ)ij | for any n, (22)

TrSµ ≥
m∑
ν=1

|(Aµ)ν,m+ν | for even n = 2m, (23)

where M (i1, . . . , ir;B) is the principal minor of order r ≤
n of matrix B, and Sµ and Aµ are the symmetric and the
antisymmetric part of Hµ: Hµ = Sµ + iAµ.

The first two inequalities (20) and (21) are proved in
the second paper of reference [13] (Lemma 2 in [13]). The
proof of the third matrix inequality of the Lemma can
be performed along the following lines. We represent the
trace of S in the form TrS = (1/(n − 1))

∑
j>i(Sii +

Sjj) and consider the 2 × 2 principal submatrices S(ij)
of S, [S(ij)]11 = Sii, [S(ij)]12 = Sij = [S(i, j)]21,
[S(jj)]22 = Sjj . These are symmetric and non-negative
definite [13,14]. Similarly we define 2 × 2 antisymmetric
matrices A(ij) and compose H(ij) = S(ij)+iA(ij). Then
we apply (20) to H(ij) and use the Hadamard inequal-
ity to obtain Sii + Sjj ≥ 2 |Aij |, wherefrom the desired
inequality (22) follows.

For even n, n = 2m, we put TrS =
∑m

ν=1(Sνν +
Sν+m,ν+m) and in a similar way obtain inequality (23).

For brevity we shall call the above inequalities princi-
pal minor inequalities of type (n,m) and order r.

Since the characteristic coefficients C(n)
r (B) of order

r ≤ n of any matrix B are sums of the principal mi-
nors [14], the above inequalities (20) and (21) remain
valid if one replaces M (i1, . . . , ir;B) with C(n)

r (B) for the
corresponding B. The obtained inequalities for C(n)

r (B)
are called characteristic. Note that M (i1, . . . , in;B) =
C

(n)
n (B) and C(n)

n (B) = detB, while C(1)
n (B) = TrB.

By a suitable physical choice of matrices Hµ in matrix
inequalities (20–23), and in the corresponding character-
istic inequalities as well, one can obtain series of physical
relations. If matrices Hµ are constructed by means of sta-
tistical moments of observables, then the obtained inequal-
ities are UR’s, which could naturally be called principal
or characteristic UR’s.

All UR’s considered in the previous sections and
subsections, including (16), can be casted in the
forms (20–23). The conventional UR (16) is of the
form (23) with S = (iσ′(Q)J)2k and A = (Aij): Aµν =
Am+µ,m+ν = 0, Aν,m+ν = −Am+ν,ν = 1/22k−1, where
σ′ is the diagonal uncertainty matrix, obtained from
σ by means of a symplectic transformation Q′ = ΛQ
[11,10]. Next we consider further illustrative examples of
non-negative matrices Hµ = H†

µ, µ = 1, . . . ,m, and the
related new UR’s.

Example 1. An illustrative physical choice of Hµ is
the following Hµ = Gµ(X;ψµ; k), where

Gµ;ij = 〈(X − 〈Xi〉)k/2ψµ|(Xj − 〈Xj〉)k/2|ψµ〉 · (24)

Matrix Gµ can be recognized as Gram matrix for the
transformed states |χµi〉 = (X − 〈Xi〉)k/2|ψµ〉. The di-
agonal element Gµ;ii is just the k-order moment of Xi in

|ψµ〉. The symmetric part of Gµ;ij is defined as the un-
certainty matrix for k-order moments. For one state the
inequality (20) with r = n and H = G(X;ψ; 2) coincides
with Robertson UR (8). For two states and 2 observables
p and q the senior inequalities (20) and (21) coincide and
(with Hµ = G(Q;ψµ; 2)) reproduce (19); for arbitrary X
and Y equation (20) produces the (2, 2)-type UR,

(∆ψ1X)2(∆ψ2Y )2 + (∆ψ2X)2(∆ψ1Y )2

−2 |∆ψ1XY∆ψ2XY | ≥ 1
2
|〈[X,Y ]〉ψ1〈[X,Y ]〉ψ2 | .(25)

This is a direct extension of conventional Schrödinger
UR (6) to two distinct states. Similar UR’s are obtained
for k-order statistical moments using Gµ(X;ψµ; k), k > 2.

Example 2. Another interesting family of UR’s is pro-
vided by the choice Hµ = ′Gµ(X ;ψµ; k) with elements

′Gµ;ij = 〈(X − 〈X〉)iψµ|(X − 〈X〉)j |ψµ〉, i, j = 1, . . . , k.
(26)

Matrix ′Gµ is recognized as Gram matrix for k states
| ′χµ,i〉 = (X − 〈X〉)i|ψµ〉, and ′Gµ;ii is the i-order mo-
ment of X . Thus the resulting inequalities of type (1,m)
are UR’s for statistical moments of X of several orders
simultaneously. In the simplest case of k = 2 and m = 1
(one state) det ′G ≥ 0 produces the UR 〈(X−〈X〉)2〉〈(X−
〈X〉)4〉 − 〈(X − 〈X〉)3〉2 − 〈(X − 〈X〉)2〉3 ≥ 0.

Gram matrix G for any n vectors |χµ〉 =
aµk(X ;ψk)|ψk〉 (aµk(X,ψk) being combinations of oper-
ators Xi and their moments in |ψk〉) will produce some
UR’s [13]. Note that for one state G = 〈χ|χ〉 with
detG = 〈χ|χ〉 ≥ 0. For example, take the combina-
tion [15] |χ〉 = |φ〉−|ψ〉〈ψ|φ〉−|ψX〉〈ψX |φ〉, where |ψX〉 =
(X−〈X〉ψ)|ψ〉/∆ψX . Now detG ≥ 0 immediately pro-
duces the inequality

∆ψX ≥ |〈φ|(X−〈X〉ψ)|ψ〉| /
√

1−|〈φ|ψ〉|2 ≡ f [X,ψ, φ].

Similarly ∆φX = f [X,φ, ψ] (ψ and φ interchanged), and
the (1, 2) UR reads ∆ψX∆φX ≥ f [X,ψ, φ] f [X,φ, ψ] ≥ 0.

4 Concluding remarks

The presented scheme for construction of (state-
entangled) uncertainty relations is quite general, since
it is based on abstract matrix inequalities (20–23). Any
non-negative Hermitian matrices Hµ involving (second or
higher) statistical moments of observables, both for quan-
tum and classical stochastic observables, can be used in
this scheme to produce a hierarchy of uncertainty rela-
tions of types (n, m). We have shown that one of the
basic quantities for the uncertainty relations in quantum
physics is the Gram matrix. Its symmetric part can be re-
garded as a generalization of the conventional uncertainty
matrix σ(X). This is most clear for Gram matrix of the
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form (24). This generalized definition of the covariance
matrix persists for the states that are outside the domain
of the product XiXj, and is valid for mixed states as well.
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